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Abstract

The negative symmetry flows are incorporated into the Riemann–Hilbert problem for the homo-
geneousAm-hierarchy and itŝgl(m+ 1,C) extension.

A loop group automorphism of order two is used to define a sub-hierarchy ofĝl(m+1,C) hierar-
chy containing only the odd symmetry flows. The positive and negative flows of the±1 grade coin-
cide with equations of the multidimensional Toda model and of topological–anti-topological fusion.
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1. Introduction

The Riemann–Hilbert problem has a long history of applications within the theory of
soliton equations (see e.g.[1,2]). Here, we make use of the Riemann–Hilbert problem
to formulate multi-time evolution equations of a class of integrable models associated to
ĝl(m+ 1) loop algebras. The starting point is factorization of a loop group elementG(λ):

G(λ) = G−(λ)G+(λ), (1.1)

whereG+(λ) (G−(λ)) belong to subgroups constructed from positive (strictly negative)Ĝ+
(Ĝ−) graded subalgebras. The gradation is defined by powers of the spectral parameterλ

counted by the grading operatord = λ(d/dλ). Such a gradation is known as homogeneous
gradation. The loop algebrâG decomposes into graded subspacesĜ = ⊕n∈ZĜn with Ĝn
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such that [d, Ĝn] = nĜn. The parameterλ plays a two-fold role; it appears as a spectral
parameter in the fundamental linear spectral problem of the integrable model and also serves
as a loop variable parameterizing the closed contour on the complex plane taken here to be
a unit circleS1.

The matrices appearing in the Birkhoff factorization(1.1)are linked to another important
concept in the soliton theory, namely the dressing transformation which maps a vacuum to
soliton solutions. In the context of the generalized Drinfeld–Sokolov formalism the dressing
transformation introduces a multi-time structure associated to the positive grade Heisenberg
subalgebra in̂G [3–5]. As we vary the positive grade, the isospectral times corresponding to
the generators of the Heisenberg subalgebra form an hierarchy of equations of motion. This
provides a standard algebraic derivation of the integrable hierarchy which can be embedded
within the Riemann–Hilbert problem. The combination of these two basic concepts allows
us to derive all fundamental objects like the Hamiltonian densities and the tau function
using the flows and algebraic structure inherited from the Riemann–Hilbert problem.

The well-knownG = sl(2) examples of the dressing method are mKdV and AKNS hier-
archies associated to the principal and homogeneous gradations, respectively. Also, corre-
sponding toG = sl(2) with the principal and homogeneous gradations are the sine-Gordon
and complex sine-Gordon hierarchies. However, they fall outside the scope of the standard
dressing technique because their times are associated to the negative grade generators of
the Heisenberg subalgebra. This motivates construction of a formalism which would in-
corporate both positive and negative times. The Riemann–Hilbert problem naturally allows
for such a generalization[6,7]. The outcome of this construction is a unified framework
with hierarchies of evolution equations corresponding to mutually commuting positive and
negative flows.

In this paper, we generalize the multi-time formulation of the Riemann–Hilbert problem
by including all self-commuting diagonal generators of theĝl(m + 1) loop algebra of
positive and negative grades. It is known that in the homogeneous gradation the Heisenberg
subalgebra generated byE(k) = µm ·H(k) (µm is themth fundamental weight) withk ∈ Z

has a centralizer given bŷgl(m)× û(1) which is non-Abelian form > 1 (see e.g.[8]). The
symmetry structure in question is given by the self-commuting symmetry flows associated
not to the full centralizer of the Heisenberg subalgebra but only to the Abelian generators
E
(k)
jj = λkEjj , j = 1, . . . , m + 1 within it. Here, we use a notation(Ers)ij = δir δjs. Those

flows which correspond to the Heisenberg subalgebra generatorsE(k) = µm · H(k) with
positive grade (k ∈ N), agree with times of the Hamiltonian evolution equations for the
constrained KP hierarchy[9–13].

There are two different reasons for commutativity of flows. The positive (negative) flows
commute among themselves since the commutators of their associated generators vanish.
For mixed case, a straightforward calculation shows that the positive flows commute with
negative flows solely as a result of their definitions.

The presence of both positive and negative sectors of the extended hierarchy agrees with a
complex structure of̂gl(m+1,C)symmetry with flows generated byE(k)jj , j = 1, . . . , m+1.
When we consider the positive flows only, the above structure reduces naturally to the
homogeneousAm = ŝl(m + 1)-hierarchy which generalizes the AKNS hierarchy for
m > 1.
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The diagonal generators of̂gl(m+ 1) generate the multi-dimensions of the Toda model
as flows with±1 gradations of the underlying hierarchy. Those flows take a form of the
Cecotti–Vafa equations of the topological–anti-topological fusion[14,15]when considered
within the sub-hierarchy restricted (or twisted) by a specific loop group automorphism.
This unveils the topological field theory concepts in the context of the reduction of the
homogeneouŝgl(m+ 1,C)-hierarchy. Similar integrable structure with positive flows only
was recently used to find solutions to the WDVV equations[16].

In Section 2, we define a Riemann–Hilbert problem for the integrable model with the
underlyingĝl(m + 1) loop algebra with the homogeneous gradation containing positive
and negative symmetry flows. For the model with only positive multi-times this hierarchy
reduces to the homogeneousAm-hierarchy. We also study the action of associated commut-
ing symmetry flows on the dressing matrices of positive and negative gradation and derive
the conservation laws and expressions for the Hamiltonian densities. The underlying tau
function is given by taking an expectation value of the Riemann–Hilbert equation based
on the highest weight vacuum of the associated Kac–Moody algebra[17]. In Section 3,
we discuss the positive dressing matrixM and its inverse using the relation between the
algebraic and pseudo-differential approaches.

In Section 4, we derive the multidimensional Toda model equations from the positive
and negative flows of±1 grade of thêgl(m + 1,C)-hierarchy. Next, we impose the set
of constraints on the dressing matrices defining a consistent sub-hierarchy allowing only
odd positive and negative flows. The dressing matrices are constrained to be the fixed
points of a specific loop group automorphism of order 2. The Cecotti–Vafa equations of
topological–anti-topological fusion are found among the positive and negative flows of
±1 grade of the reduced integrable sub-hierarchy. The similar sub-hierarchy (without the
negative flows) has recently been shown to provide solutions of the Darboux–Egoroff system
of PDEs[16]. Here, due to the presence of negative and positive flows, we obtain two coupled
Darboux–Egoroff systems embedded in the complex-like structure of the Cecotti–Vafa
equations. As an example we discuss the extended AKNS/complex sine-Gordon model and
its reduction.

2. Extended Riemann–Hilbert problem andĝl (m +1) symmetry flows

2.1. The Riemann–Hilbert factorization for the positive flows

We will introduce the Riemann–Hilbert problem in terms two subgroups of the Lie loop
groupG defined as

G− =
{
g ∈ G|g(λ) = 1 +

∑
i<0

g(i)

}
, (2.1)

G+ =
g ∈ G|g(λ) =

∑
i≥0

g(i)

 , (2.2)
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wheregi has gradingi with respect to a homogeneous gradation defined by derivation
d = λ(d/dλ). It also holds thatG+ ∩ G− = I . Let the loop algebra corresponding toG
beĜ = ĝl(m+ 1). This algebra splits into the direct sum̂G = Ĝ+ ⊕ Ĝ−, whereĜ± are Lie
algebras associated with the subgroupsG±.

We now define a Riemann–Hilbert factorization problem for the homogeneous gradation:

exp

m+1∑
j=1

∞∑
n=1

E
(n)
jj u

(n)
j

 g = Θ−1(u, λ)M(u, λ), (2.3)

whereg is a constant element inG−G+ whileΘ−1 ∈ G−,M ∈ G+. We use the multi-time
notation with(u) = (u1, . . . ,um+1) to denotem + 1 multi-flowsuj . Each argumentuj ,
j = 1, . . . , m+ 1 is an abbreviated notation for the multi-flowsu(n)j with n between 1 and

∞. We refer to the flowsu(n)j with n > 0 as positive flows to distinguish them from the
negative flows associated with the negativen < 0 gradations, to be defined below.

Acting with ∂/∂u(n)j on both sides of(2.3)we find

Θ(u)E
(n)
jj Θ

−1(u) = Θ(u)

(
∂

∂u
(n)
j

Θ−1(u)

)
+
(

∂

∂u
(n)
j

M(u)

)
M−1(u). (2.4)

Note, thatΘ((∂/∂u(n)j )Θ−1) is inG− and((∂/∂u(n)j )M)M−1 is inG+. Hence, for the(2.4)
expressions:

∂

∂u
(n)
j

Θ(u, λ) = −(ΘE(n)jj Θ
−1)−Θ(u, λ), (2.5)

∂

∂u
(n)
j

M(u, λ) = (ΘE
(n)
jj Θ

−1)+M(u, λ), (2.6)

where(·± denote the projections intôG±.
We now address the issue of commutativity of the flows. Applying, respectively,∂2/∂u

(n)
j

∂u
(k)
i and∂2/∂u

(k)
i ∂u

(n)
j on both sides ofEq. (2.3)produces identical results due to com-

mutativity ofE(n)jj with E(k)ii . This ensures that

∂2Θ(u)

∂u
(n)
j ∂u

(k)
i

= ∂2Θ(u)

∂u
(k)
i ∂u

(n)
j

,
∂2M(u)

∂u
(n)
j ∂u

(k)
i

= ∂2M(u)

∂u
(k)
i ∂u

(n)
j

. (2.7)

FromEq. (2.5)we find the tracelessness condition

m+1∑
j=1

∂

∂u
(n)
j

Θ(u, λ) = 0, (2.8)

which allows to consider the positive flows together with the negative dressing matrix
Θ(u, λ)as a homogeneousAm-hierarchy with âsl(m+1)symmetry of flows, to be discussed
in the next subsection. Form = 1 we recover in this way the AKNS hierarchy.
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2.2. The homogeneousAm-hierarchy, isospectral flows, Hamiltonians

The flows defining conservation laws of the homogeneousAm-hierarchy are defined in
terms ofu(k)m+1-flows through

∂

∂tk
= ∂

∂u
(k)
m+1

. (2.9)

The standard dressing construction[8], associates isospectral flows to a semisimple grade-one
elementE(1):

E(1) = λE = µm ·H(1) = λ

m+ 1
I − λEm+1m+1, (2.10)

whereµm is themth fundamental weight of sl(m+ 1). The kernel of adE is

K = Ker(adE) = {ĝl(m)⊕ û(1)}, (2.11)

with the û(1) generated centerC(K) = {µm ·H(k), k ∈ Z} of Ker(adE). Each isospectral
flow tk is assigned to an element:

E(k) ≡ µm ·H(k), k ≥ 1, (2.12)

in the centerC(K) according to

∂

∂tk
Θ = (ΘE(k)Θ−1)−Θ, (2.13)

which coincides with(2.5) for j = m+ 1 in agreement with the definition(2.9).
Fork = 1, we obtain from(2.5)(

∂

∂u
(1)
m+1

− E
(1)
m+1m+1 − [θ(−1), E

(1)
m+1m+1]

)
Θ = −ΘE(1)m+1m+1, (2.14)

whereΘ(−1) is a term of expansion ofΘ = 1 + θ(−1) + O(λ−2). Eq. (2.14)can also be
rewritten as(

∂

∂t1
+ E(1) + [θ(−1), E(1)]

)
Θ = ΘE(1), (2.15)

in agreement with(2.13).
The potentialA ≡ [θ(−1), E(1)] lies in the grade-zero component of the image of ad(E)

and can therefore be parameterized as

A = [θ(−1), E(1)] = −[θ(−1), E
(1)
m+1m+1] =

m∑
i=1

(−ΨiEim+1 +ΦiEm+1i ). (2.16)

We will refer to the hierarchy defined by the isospectral times from(2.13)and symmetry
flows fromEq. (2.5)with the parameterization in(2.16)as the homogeneousAm-hierarchy
[19–21].
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Given the parameterization(2.16), Eq. (2.14)can be cast into the form

Θ−1LΘ = ∂x − E
(1)
m+1m+1, (2.17)

involving the matrix Lax operatorL:

L = ∂x − E
(1)
m+1m+1 + A, (2.18)

where∂x = ∂/∂t1 = ∂/∂u
(1)
m+1 is acting to the right as an operator according to the Leibniz

rule. In [22], the homogeneousAm hierarchy was constructed by rotating matrices of the
Lax operator(2.18)into the kernel of ad(E(1)).

The linear spectral problem emerges when settingn = 1 andj = m + 1 in (2.6). This
reveals the matrixM as a solution of[7]:

L(M) = (∂x − E
(1)
m+1m+1 + A)(M) = 0. (2.19)

We will now discuss the conservation laws of the homogeneousAm-hierarchy. These laws
are based on requirement of locality with respect to the potentialsΦi, Ψi from (2.16). A
quantity is considered local if it is a polynomial ofΦi, Ψi and their derivatives.

FromEq. (2.5)we find
∂

∂u
(n)
i

(ΘE
(n′)
jj Θ−1) = [ΘE(n

′)
jj Θ−1, (ΘE

(n)
ii Θ

−1)−], (2.20)

and therefore
∂

∂u
(n)
i

Tr0(E
(1)ΘE

(n′)
jj Θ−1)− ∂

∂u
(n′)
j

Tr0(E
(1)ΘE

(n)
ii Θ

−1)

= Tr0(E
(1)[ΘE(n

′)
jj Θ−1,ΘE

(n)
ii Θ

−1]) = 0, (2.21)

with the trace which includes projection on theλ0 term:

Tr0(XY) ≡ 〈X, Y 〉0 =
∑
i+j=0

tr(XiYj ), X =
∑
i

Xiλ
i, Y =

∑
i

Yiλ
i . (2.22)

It is therefore natural to associate to the Riemann–Hilbert factorization approach the
quantities:

H(n)j = Tr0(E
(1)ΘE

(n)
jj Θ

−1), j = 1, . . . , m+ 1, (2.23)

which satisfy according to(2.21)the identity

∂H(n)j

∂u
(n′)
k

− ∂H(n
′)

k

∂u
(n)
j

= 0, n, n′ > 0. (2.24)

Furthermore, by a simple differentiation one can verify thatH(n)j is a derivativeH(n)j =
∂xJ

(n)
j of a current density:

J (n)j = −Tr0

(
λ

dΘ

dλ
E
(n)
jj Θ

−1
)

= −Resλ

(
tr

(
E
(n)
jj Θ

−1 dΘ

dλ

))
,

j = 1, . . . , m+ 1. (2.25)
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The current densityJ (n)j satisfies the identity:

∂J (n)j

∂u
(n′)
k

− ∂J (n
′)

k

∂u
(n)
j

= 0, n, n′ > 0, (2.26)

analogous to(2.24).
The quantity

∂J (n)j

∂u
(n′)
k

= Tr0

(
λ

d(ΘE(n
′)

kk Θ
−1)+

dλ
ΘE

(n)
jj Θ

−1

)
(2.27)

becomes local (in terms ofΨi,Φi) for j = k = m + 1, as observed in[22]. We therefore
obtain the local conservation laws in terms of

Hn = H(n)m+1 = −Tr0(E
(1)ΘE(n)Θ−1), (2.28)

and

Jn = J (n)m+1 = Tr0

(
λ

dΘ

dλ
E(n)Θ−1

)
= Resλ

(
tr

(
E(n)Θ−1 dΘ

dλ

))
, (2.29)

connected viaHn = ∂xJn. The observation that(2.27)becomes local forj = k = m+ 1
provides a direct way to prove conservation of the HamiltoniansHn = ∫ Hn dx. One notices
that

∂

∂tn′
Hn =

∫
∂x

∂

∂tn′
Jn = 0, n, n′ > 0, (2.30)

due to locality of the relevant expression in(2.27)for j = k = m+ 1.
Consider the following expansions:

Θ = 1 +
∞∑
k=1

Θ(−k)

λk
, (2.31)

ΘE(1)Θ−1 = E(1) + A+
∞∑
k=1

A(−k)

λk
, (2.32)

ΘE(n)Θ−1 = λnE + λn−1A+
∞∑
k=1

λn−k−1A(−k). (2.33)

Pluggingj = k = m+ 1 andn′ = 1 into the identity(2.26)yields

tr(EA(−n)) = −1

2

n−1∑
k=0

tr(A(−k)A(1+k−n)), n ≥ 1. (2.34)

In terms of the elements of expansions(2.31)–(2.33)Hn takes the form

Hn = −tr(EA(−n)) = −1

2

n−1∑
k=0

tr(A(−k)A(1+k−n)), n ≥ 1, (2.35)
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which allow us to cast Hamiltonians into the well-known form due to[20]

Hn = 1
2Tr0(λ

n+1X2(λ)) for n ≥ 1, (2.36)

where

X(λ) =
∞∑
i=1

Xiλ
−i =

∞∑
k=1

A(−k+1)λ−k = (ΘE(0)Θ−1)−, (2.37)

whereA(0) denotes the potentialA.Hn can also be written in an equivalent form

Hn = 1

2
〈λnX,X〉−1 = 1

2

∮
dλ λn tr(X2), (2.38)

where we introduced another symmetric bilinear form

〈X, Y 〉−1 ≡ Resλ(tr(XY)) =
∑

i+j=−1

tr(XiYj ). (2.39)

From

d

dε

1

2
〈λn(X + εY )2〉−1

∣∣∣∣
ε=0

= 〈λnX, Y 〉−1 = 〈∇Hn, Y 〉−1, (2.40)

we identify∇Hn = λnX which according to the Adler–Kostant–Symes formalism yields
for the flows:

∂X(λ)

∂tn
= [(λnX(λ))−, X(λ)] = [(ΘEnΘ−1)−, X(λ)], (2.41)

or equivalently

∂X(λ)

∂tn
= −[(λnX(λ))+, X(λ)]−, (2.42)

which fully agrees with the dressing formula in(2.20).

2.3. Extended Riemann–Hilbert factorization problem, negative flows

We now define an extended (with positive and negative flows) Riemann–Hilbert factor-
ization problem for the homogeneous gradation:

exp

m+1∑
j=1

∞∑
n=1

E
(n)
jj u

(n)
j

 g exp

−
m+1∑
j=1

∞∑
n=1

E
(−n)
jj u

(−n)
j

 = Θ−1(u, λ)M(u, λ).

(2.43)

As beforeg is a constant element inG−G+ whileΘ−1 ∈ G−, M ∈ G+. Also, again we
use the multi-time notation with(u) = (u1, . . . ,um+1) to denotem+ 1 multi-flowsuj but

now inuj , j = 1, . . . , m+ 1 the multi-flowsu(n)j depend onn between−∞ and∞.
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The exponential term exp(−∑m+1
j=1
∑∞
n=1E

(−n)
jj u

(−n)
j ) on the left-hand side of(2.43)

contains terms of negative grade. This term extends the standard Riemann–Hilbert problem
of the KP like models by negative flows.

It is known, that the standard Riemann–Hilbert factorization holds for GL(m,C)the
sufficiently small values of the flow parameters appearing in the exponential[6,18]. Here
we write formally an infinite sum over the flow parameters in each exponential term on
the left-hand side ofEq. (2.43). Since our interest in the generalized Riemann–Hilbert
factorization is in deriving an hierarchy of evolution equations for the Abelian flows we can
in principle truncate the formal infinite sums in the exponential functions and still obtain
the information we are seeking for sufficiently many flows.

In addition, to the evolutionequations (2.5) and (2.6), which still hold in the extended
case, we also encounter the new hierarchy of equations governing the evolution of the
negative multi-flows. After applying∂/∂u(−n)j on both sides of(2.43)one finds

∂

∂u
(−n)
j

Θ(u, λ) = (ME(−n)jj M−1)−Θ(u, λ), (2.44)

∂

∂u
(−n)
j

M(u, λ) = −(ME(−n)jj M−1)+M(u, λ). (2.45)

One observes that the above system of flow equations is invariant under the right multipli-
cation ofM(u, λ) by a constant diagonal matrix.

Similarly, we find the tracelessness condition:

m+1∑
j=1

∂

∂u
(−n)
j

M(u, λ) = 0, (2.46)

which allows to consider the negative flows together with the positive dressing matrix
M(u, λ) as a homogeneousAm-hierarchy, which generalizes the complex sine-Gordon
equation hierarchy[7]. For the hierarchy containing both positive and negative flows and
the dressing matricesΘ(u, λ) andM(u, λ) we work with the fullĝl(m+ 1) symmetry.

Let us now discuss commutativity of all flows. Applying, respectively,∂2/∂u
(−n)
j ∂u

(−k)
i

and∂2/∂u
(−k)
i ∂u

(−n)
j on both sides ofEq. (2.43)produces identical results due to commu-

tativity of E(−n)jj with E(−k)ii . This ensures that

∂2Θ(u)

∂u
(−n)
j ∂u

(−k)
i

= ∂2Θ(u)

∂u
(−k)
i ∂u

(−n)
j

,
∂2M(u)

∂u
(−n)
j ∂u

(−k)
i

= ∂2M(u)

∂u
(−k)
i ∂u

(−n)
j

. (2.47)

In a mixed case we apply∂2/∂u
(n)
j ∂u

(−k)
i and∂2/∂u

(−k)
i ∂u

(n)
j on both sides ofEq. (2.43).

The result is

∂2Θ(u)

∂u
(−n)
j ∂u

(k)
i

= −([(ME(−n)jj M−1)−,ΘE(k)ii Θ
−1])−Θ

−(ΘE(k)ii Θ
−1)−(ME(−n)jj M−1)−Θ, (2.48)
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∂2Θ(u)

∂u
(k)
i ∂u

(−n)
j

= ([(ΘE(k)ii Θ
−1)+,ME(−n)jj M−1])−Θ

−(ME(−n)jj M−1)−(ΘE(k)ii Θ
−1)−Θ. (2.49)

One finds that the right-hand sides ofEqs. (2.48) and (2.49)are equal and cancel each
other’s contributions to the commutator:[

∂

∂u
(−n)
j

,
∂

∂u
(k)
i

]
Θ = 0. (2.50)

Note, that this time proof for the commutativity follows automatically from the construction
and does not rely on the commutativity ofE(n)jj with E(−k)ii .

Hence it holds that

∂2Θ(u)

∂u
(n)
j ∂u

(−k)
i

= ∂2Θ(u)

∂u
(−k)
i ∂u

(n)
j

, (2.51)

and analogous arguments lead to the same identity with matrixM replacingΘ.

2.4. The tau function

The identity(2.26)suggests thatJ (n)j can be written as∂/∂u(n)j of some function of the
Φi, Ψi variables. Conventionally, this function is denoted as the logarithm of theτ -function.
Accordingly, theτ -function is introduced by the relation:

J (n)j = −∂ logτ

∂u
(n)
j

, (2.52)

with more conventional identity

Jn = − ∂

∂tn
logτ, (2.53)

being a special case corresponding toj = m+ 1. Note, that the relation
∂Jn
∂tn′

− ∂Jn′

∂tn
= 0, n, n′ > 0 (2.54)

also holds as a special case of(2.26).
We will use below the setting ofAm Kac–Moody algebra to integrate these equations to

obtain a closed expression for theτ -function.
Let the elements of the Kac–Moody algebra beξ + sk̂, whereξ(ϕ) ≡ ξa(ϕ)Ta is a

function onS1 with values in the underlying finite-dimensional Lie algebraG = sl(m+ 1)
ands is the central element. The Kac–Moody algebra reads:

[ξ1 + s1k̂, ξ2 + s2k̂] = [ξ1, ξ2] + k̂ω(ξ1, ξ2) = [ξ1, ξ2] + k̂

∮
dϕ

2π
tr(∂ϕξ1ξ2),

whereϕ is anS1 angle variable. The adjoint action of the groupG onG

Ad(g)ξ = gξg−1,
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generalizes to

Adg(ξ + sk̂) = gξg−1 + k̂

(
s +
∮

dϕ

2π
tr(g−1∂ϕgξ)

)
, (2.55)

which in terms of the loop variableλ = exp(iϕ) takes the following form:

Adg(ξ + sk̂) = gξg−1 + k̂

(
s + Resλ tr

(
g−1 dg

dλ
ξ

))
. (2.56)

In particular,

AdΘ(E
(n)) = ΘE(n)Θ−1 + k̂Resλ tr

(
Θ−1 dΘ

dλ
E(n)
)

= ΘE(n)Θ−1 + k̂Jn. (2.57)

Let |0〉 be the highest weight state such thatX≥0|0〉 = 0 and〈0|X≤0 = 0 with 〈0|k̂|0〉 = 1.
Then

〈0|X+X−|0〉 = ω(X+, X−) = Resλ tr

(
dX+
dλ

X−
)
. (2.58)

The τ -function is defined by taking the centrally extended the Riemann–Hilbert formula
(2.43)and multiplying from left and right by the vacuum states:

τ(u) =
〈
0

∣∣∣∣∣∣exp

m+1∑
j=1

∞∑
n=1

E
(n)
jj u

(n)
j

 g exp

−
m+1∑
j=1

∞∑
n=1

E
(−n)
jj u

(−n)
j

∣∣∣∣∣∣0
〉
, (2.59)

similar to the definition in[17] for the AKNS hierarchy. In the above definition theτ -function
depends on all the symmetry flows of the extended hierarchy. Commutativity of all flows
extends to the affine Kac–Moody case. The presence of a central element does not spoil the
commutativity between positive and negative flows. The cancellation between the commu-
tators shown inEq. (2.50)extends to the affine case.

Alternatively, for M̂ being in a central extension̂G of G overM we can write the
τ -function asτ(u) = 〈0|M̂|0〉 = 〈0|M̂0|0〉 since the zero-grade term containingk̂ resides
in M̂0.

By setting all the negative flowsu(−n)j and positive flowsu(−n)j , j �= m + 1 to zero in
(2.59)we recover the standardτ -function for the homogeneousAm-hierarchy[17]. From
(2.59)we find

∂

∂tn
τ (u) = −〈0|E(n)Θ̂−1(u)M̂(u)|0〉 = −〈0|E(n)Θ̂−1(u)|0〉τ(u). (2.60)

Using the property〈0|X− = 0 of the highest weight state, the last equation can be rewritten
as

∂

∂tn
τ (u) = −〈0|AdΘ(E

(n))|0〉τ(u) = −Jnτ (u), (2.61)

which confirms that the definition(2.59)reproduces theτ -function defined previously in
(2.53). More generally we find

∂

∂u
(n)
j

τ (u) = 〈0|AdΘ(E
(n)
jj )|0〉τ(u) = −J (n)j τ (u). (2.62)
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3. The pseudo-differential formalism and construction of theM matrix

In this section we construct explicitly theM(u, λ) andM−1(u, λ) matrices in terms of
the objects appearing in the pseudo-differential Lax calculus approach to the homogeneous
Am hierarchy. The matrixM will be constructed as a expansion in positive powers ofλ

which solves the spectral linear problemL(M) = 0 in (2.19). This will be accomplished by
establishing relation between the algebraic approach and the equivalent one based on the
pseudo-differential Lax operator[9–13]:

L = ∂x +
m∑
i=1

Φi∂
−1
x Ψi, (3.1)

and its inverseL−1. Both operators can be represented as ratios of two monic ordinary
differential operators of orderm andm+ 1 [7,23,24]:

L = Lm+1L
−1
m = ∂x +

m∑
i=1

Lm+1(φi)∂
−1
x ψi, (3.2)

L−1 = LmL
−1
m+1 =

m+1∑
j=1

Lm(φ̄j )∂
−1
x ψ̄j . (3.3)

Next, we provide few definitions and lemmas regarding the ordinary differential operators
and Wronskians necessary for technical proofs to be shown in this section. LetLm be a
monic differential operator of orderm: Lm = ∂mx + um−1∂

m−1
x + · · · + u1∂x + u0 and let

φi , i = 1, . . . , m be a basis for KerLm = {φ1, . . . , φm}. It follows that the action ofLm is
fully determined bym elements of its kernel:

Lm(f ) = Wm[φ1, . . . , φm, f ]

Wm[φ1, . . . , φm]
. (3.4)

HereWm[φ1, . . . , φm] is a determinant of the Wronskian matrix:

Wm×m = (∂i−1
x (φj ))1≤i,j≤m, (3.5)

which is nonsingular for the linearly independent functionsφ1, . . . , φm.
In Eq. (3.2)we encounterψi, i = 1, . . . , mwhich are elements of the kernel of an adjoint

operatorL†
m = (−1)m∂mx + (−1)m−1∂m−1

x um−1 + · · · − ∂xu1 + u0 [25,26]:

ψi = (−1)m+i Wm−1[φ1, . . . , φ̂i , . . . , φm]

Wm[φ1, . . . , φm]
, i = 1, . . . , m, (3.6)

with φ̂i being omitted from the Wronskian.Eq. (3.3)contains elements of{φ̄j }m+1
j=1 and

{ψ̄j }m+1
j=1 in Ker(Lm+1) and Ker(L†

m+1) connected with each other through a version of
(3.6):

ψ̄j = (−1)m+1+j Wm−1[φ̄1, . . . ,
ˆ̄φj , . . . , φ̄m+1]

Wm+1[φ̄1, . . . , φ̄m]
, j = 1, . . . , m+ 1. (3.7)
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Let (W−1
m×m)ij , i, j = 0, . . . , m be the matrix elements of the inverse of the Wronskian

matrixWm×m. The following relations are then satisfied:
m∑
j=1

(W−1
m×m)ijφ

(j−1)
k = δi,k,

m∑
k=1

φ
(j−1)
k (W−1

m×m)kl = δj,l . (3.8)

By definition it holds that

(W−1
m×m)ij = (−1)i+j

det(j,i)‖Wm×m‖
Wm[φ1, . . . , φm]

, (3.9)

where the determinant on the right-hand side is the minor determinant obtained by extracting
thej th row andith column from the Wronskian matrixWm×m given inEq. (3.5).

The following technical identity, which is valid for an arbitrary functionχ , follows
directly from(3.5)–(3.9):

m∑
j=1

(W−1
m×m)ijχ

(j−1) = (−1)m+i Wm[φ1, . . . , φ̂i , . . . , φm, χ ]

Wm[φ1, . . . , φm]
, i = 1, . . . , m.

(3.10)

Due to the definition(3.6) the column(ψ1, . . . , ψm)
T agrees with the last column in the

inverse matrixW−1
m×m. As a consequence of this connection we have a relation

m∑
i=1

φ
(k)
i (t)ψi(t) = δk,m−1 for k = 0,1, . . . , m− 1. (3.11)

Let us introduce a notation

Φ
(−n)
j = L−n+1(Lm(φ̄j )), Ψ

(−n)
j = (L†)−n+1(ψ̄j ),

j = 1, . . . , m+ 1, n = 1, . . . ,∞, (3.12)

whereL† = (L
†
m)

−1L
†
m+1. Forn = 1 this reproduces the functions:

Φ
(−1)
j = Lm(φ̄j ), Ψ

(−1)
j = ψ̄j , j = 1, . . . , m+ 1, (3.13)

which satisfy relations

L(Φ(−1)
j ) = 0, L†(Ψ (−1)

j ) = 0, j = 1, . . . , m+ 1. (3.14)

From(3.11)we easily derive that

Res∂xL
−1 =

m+1∑
j=1

Lm(φ̄j )ψ̄j =
m+1∑
j=1

Φ
(−1)
j Ψ

(−1)
j = 1. (3.15)

Define nowFj =∑∞
n=1 λ

n−1Φ
(−n)
j . As pointed out in[7], due to(3.14)theFj ’s satisfy

L(Fj ) = λFj . (3.16)

The following definition appeared in[16].
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Definition 3.1. Define the(m+ 1)× (m+ 1) matrixM = (Mij )1≤i,j≤m+1 by

Mm+1j = Fj , Mij = ∂−1
x (ΨiFj ), i = 1, . . . , m, j = 1, . . . , m+ 1, (3.17)

or in the matrix form

M(u, λ) =


∂−1
x (Ψ1F1) · · · ∂−1

x (Ψ1Fm+1)
... · · · ...

∂−1
x (ΨmF1) · · · ∂−1

x (ΨmFm+1)

F1 · · · Fm+1

 . (3.18)

Due to(3.16) and (3.17)we find

∂xMij = ΨiMm+1j , i = 1, . . . , m,

(∂x − λ)Mm+1j +
m∑
i=1

ΦiMij = 0, j = 1, . . . , m+ 1. (3.19)

In terms of the matrix Lax operatorL from (2.18) the aboveEq. (3.19)is nothing but
spectral problemL(M) = 0 (2.19). This shows that the matrixM constructed in terms of
the objects belonging to the pseudo-differential calculus can be identified with the positive
grade dressing matrixM(u, λ) of the extended Riemann–Hilbert problem.

Expanding now theM(u, λ) as in

M(u, λ) =
∞∑
i=1

Mi(u)λi = M0 +M1λ+ · · · , (3.20)

we find from the definition(3.17)for the zero-grade component ofM(u, λ):

(M0)m+1j = Φ
(−1)
j , (M0)ij = ∂−1

x (ΨiΦ
(−1)
j )),

i = 1, . . . , m, j = 1, . . . , m+ 1, (3.21)

or in the matrix form

M0(u) =



∂−1
x (Ψ1Φ

(−1)
1 ) · · · ∂−1

x (Ψ1Φ
(−1)
m+1)

... · · · ...

∂−1
x (ΨmΦ

(−1)
1 ) · · · ∂−1

x (ΨmΦ
(−1)
m+1)

Φ
(−1)
1 · · · Φ

(−1)
m+1


. (3.22)

We now propose the following matrix as an inverse ofM0:

(M0)
−1
jm+1 = Ψ

(−1)
j , (M0)

−1
ji = ∂−1

x (ΦiΨ
(−1)
j ),

i = 1, . . . , m, j = 1, . . . , m+ 1, (3.23)
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which in the matrix form is given by

M−1
0 (u) =


∂−1
x (Φ1Ψ

(−1)
1 ) · · · ∂−1

x (ΦmΨ
(−1)
1 ) Ψ

(−1)
1

... · · · · · · ...

∂−1
x (Ψ1Ψ

(−1)
m+1 ) · · · ∂−1

x (ΨmΨ
(−1)
m+1 ) Ψ

(−1)
m+1

 . (3.24)

We now provide a proof of this statement. We first notice that
∑m+1
j=1 (M0)m+1j (M0)

−1
jm+1 = 1

due to(3.15). Furthermore,
∑m+1
j=1 (M0)m+1j (M0)

−1
ji = 0 and

∑m+1
j=1 (M0)m+1j (M0)

−1
ji =

0 as follows from relationsL−1(Φi) = 0, (L†)−1(Ψi) = 0, i = 1, . . . , m.
It remains to show them×m identities:

m+1∑
j=1

(M0)ij (M0)
−1
jk =

m+1∑
j=1

∂−1
x (ΨiΦ

(−1)
j )∂−1

x (ΦkΨ
(−1)
j ) = δik. (3.25)

Consider first a factor:

∂−1
x

(
ΦkΨ

(−1)
j

)
= ∂−1

x (Lm+1(φk)ψ̄j ) = (−1)m+1+j ∂−1
x

×
W [φ̄1, . . . , φ̄m+1, φk]W [φ̄1, . . . ,

ˆ̄φj , . . . , φ̄m+1]

W2[φ̄1, . . . , φ̄m+1]


= (−1)m+1+j W [φ̄1, . . . ,

ˆ̄φj , . . . , φ̄m+1, φk]

W [φ̄1, . . . , φ̄m+1]
, (3.26)

where use was made of the Jacobi theorem:

∂x

(
Wk−1(f )

Wk

)
= Wk(f )Wk−1

W2
k

, (3.27)

involving Wronskians:

Wk ≡ Wk[g1, . . . , gk], Wk−1(f ) ≡ Wk[g1, . . . , gk−1, f ], (3.28)

for some arbitrary functionsg1, . . . , gk.
Using the same technique we also find that

∂−1
x (ΨiΦ

(−1)
j )) = ∂−1

x (ψiLm(φ̄j ) = (−1)m+j W [φ1, . . . , φ̂j , . . . , φm, φ̄j ]

W [φ1, . . . , φm]
. (3.29)
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Therefore, using relation(3.10)the quantity in(3.25)becomes

m+1∑
j=1

∂−1
x (ΨiΦ

(−1)
j )∂−1

x (ΦkΨ
(−1)
j )

=
m+1∑
j=1

m∑
s=1

(W−1
m×m)isφ̄

(s−1)
j

m+1∑
l=1

φ
(l−1)
k (W−1

m+1×m+1)jl

=
m∑
s=1

m+1∑
l=1

δsl(W
−1
m×m)isφ

(l−1)
k = δik (3.30)

as required for the proof ofM−1
0 being an inverse ofM0.

Next, defineGj(λ) =∑∞
n=1 λ

n−1Ψ
(−n)
j which is the solution of the conjugated spectral

problemL†(Gj (λ)) = λGj (λ).
We now construct the inverse of theMmatrix which we denoted byM−1 = (M−1

ij )1≤i,j≤m+1.

In view ofL(M) = 0 in (2.19)the matrix elements ofM−1 must satisfy

∂xM
−1
ji = ΦiM

−1
jm+1, i = 1, . . . , m,

(∂x + λ)M−1
jm+1 +

m∑
i=1

ΨiM
−1
ji = 0, j = 1, . . . , m+ 1, (3.31)

or in the matrix notation

∂xM
−1 +M−1(E

(1)
m+1m+1 − A) = 0. (3.32)

This provides a recurrence relation which allows calculation of terms of higher grade in
M−1 fromM−1

0 . The result in terms ofGj(λ) gives the(m + 1) × (m + 1) matrixM−1

given by

M−1
jm+1 = Gj, M−1

ji = ∂−1
x (ΦiGj ), i = 1, . . . , m, j = 1, . . . , m+ 1. (3.33)

Observe, that

m+1∑
j=1

Fj∂
−1
x Gj =

m+1∑
j=1

∞∑
n=0

∞∑
l=0

λnΦ
(−n+l−1)
j ∂−1

x Ψ
(−l−1)
j =

∞∑
n=0

λnL−(n+1), (3.34)

whereL−n =∑m+1
j=1
∑n
l=1Φ

(−n+l−1)
j ∂−1

x Ψ
(−l)
j generalizes expression forL−1. The result

(3.33)regarding theM−1 is further supported by the following identities:

m+1∑
j=1

FjGj = Res∂x

m+1∑
j=1

Fj∂
−1
x Gj

 = Res∂xL
−1 = 1, (3.35)
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which follows from(3.34)and

m+1∑
j=1

Fj∂
−1
x (GjΦi) = 0,

m+1∑
j=1

Gj∂
−1
x (FjΨi) = 0, i = 1, . . . , m, (3.36)

following fromL−1(Φi) = 0 andL†−1(Ψi) = 0 valid for i = 1, . . . , m.
Here we illustrate the above construction form = 1 with the AKNS Lax operatorL =

∂x − r∂−1
x q defining the spectral problemL(ψ) = λψ . The self-commuting isospectral

flows (n > 0): ∂nr = Bn(r) and∂nq = −B†
n (q) with Bn = (Ln)+ belong to the positive

part of the AKNS hierarchy.L can be described as a ratio of two ordinary monic differential
operators asL = L2L

−1
1 , whereL1, L2 denote monic operatorsL1 = (∂x + ϕ′

1 + ϕ′
2)

andL2 = (∂x + ϕ′
1)(∂x + ϕ′

2) of, respectively, order 1 and 2. A monic differential op-
eratorL2 is fully characterized by elements of its kernel,ϕ1 = exp(−ϕ2) and ϕ2 =
exp(−ϕ2)

∫ x exp(ϕ2 − ϕ1). Its inverseL−1
2 , is given byL−1

2 = ∑2
α=1 ϕα∂

−1
x ψα, where

ψ1 = −exp(ϕ1)
∫ x exp(ϕ2 − ϕ1) andψ2 = exp(ϕ1) are kernel elements of the conjugated

operatorL†
2 = (−∂x + ϕ′

2)(−∂x + ϕ′
1), see[26] and references therein. In this notation,

L = ∂x + L2(exp(−ϕ1 − ϕ2)) ∂
−1
x exp(ϕ1 + ϕ2) and accordingly

q = −exp(ϕ1 + ϕ2), r = −(ϕ′′
1 − ϕ′

1ϕ
′
2)exp(−ϕ1 − ϕ2). (3.37)

Similarly, the inverse ofL is also given as a ratio of differential operatorsL−1 = L1L
−1
2 =∑2

α=1L1(ϕα)∂
−1
x ψα. The functionsΦ(−1)

α ≡ L1(ϕα) andΨ (−1)
α ≡ ψα satisfy the same

flow equations asr andq with respect to the positive flows of the AKNS hierarchy.
To facilitate comparison with the Section 4.4 we introduce variablesR, u, v:

R = ϕ1, u = eϕ1

∫ x

eϕ2−ϕ1, v = ϕ′
1 e−ϕ2 (3.38)

in terms ofϕ1 andϕ2 [24].
Based on expressions(3.21)–(3.23)obtained by the pseudo-differential approach we

writeM0 and its inverse as

M0 =
(
∂−1
x (ΦΨ

(−1)
1 ) Ψ

(−1)
1

∂−1
x (ΦΨ

(−1)
2 ) Ψ

(−1)
2

)
, M−1

0 =
(
∂−1
x (ΨΦ

(−1)
1 ) ∂−1

x (ΨΦ
(−1)
2 )

Φ
(−1)
1 Φ

(−1)
2

)
,

(3.39)

and within the constrained AKNS we obtain

Φ
(−1)
1 = ϕ′

1 e−ϕ2 = −u = Ψ
(−1)
1 = −eϕ1

∫ x

eϕ2−ϕ1,

Φ
(−1)
2 = ϕ′

1 e−ϕ2

∫ x

eϕ2−ϕ1 + e−ϕ1 = ∆e−R = Ψ
(−1)
2 = eR. (3.40)

Recalling, that for the CKP hierarchy[16,32]

Ψ = Φ = −q = r, (3.41)
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and using(3.37), we obtain

∂−1
x (ΨΦ

(−1)
1 ) = eR, ∂−1

x (ΨΦ
(−1)
2 ) = u. (3.42)

In a similar way, we find

∂−1
x (ΦΨ

(−1)
1 ) = eR, ∂−1

x (ΦΨ
(−1)
2 ) = −u. (3.43)

4. The multidimensional Toda model and the Cecotti–Vafa equations

4.1. The multidimensional Toda model

Introduce a notation:

∂j ≡ ∂

∂u
(1)
j

, ∂−j ≡ ∂

∂u
(−1)
j

. (4.1)

With this notation the relevant part of the flowequations (2.5)–(2.45)takes a form

∂jΘ(u, λ) = −(ΘE(1)jj Θ
−1)−Θ(u, λ),

∂jM(u, λ) = (ΘE
(1)
jj Θ

−1)+M(u, λ), (4.2)

and

∂−jΘ(u, λ) = (ME(−1)
jj M−1)−Θ(u, λ),

∂−jM(u, λ) = −(ME(−1)
jj M−1)+M(u, λ). (4.3)

The last equation in(4.3)can also be rewritten as

∂−jM(u, λ) = −(ME(−1)
jj M−1 − (ME(−1)

jj M−1)−)M

= −ME(−1)
jj +M0E

(−1)
jj M−1

0 M. (4.4)

Projecting(4.4)on the zero grade and recalling expansion in(3.20)we find

∂−jM0 = −M1Ejj +M0EjjM
−1
0 M1, (4.5)

which can be cast in the following form:

M−1
0 ∂−jM0 = [Ejj ,M

−1
0 M1]. (4.6)

Similarly, by projecting the second equation in(4.2)on grades zero and one, we find

∂jM0 = [θ(−1), Ejj ]M0, j = 1, . . . , m+ 1, (4.7)

∂iM1 = EjjM0 + [θ(−1), Ejj ]M1. (4.8)

Using(4.5) and (4.7)we can cast the flowequations (4.2) and (4.3)in a way which reveals a
symmetry between the negative and positive flows and the dressing matrices of the positive
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and negative gradations. ReplacingM(u, λ) byM−1
0 M(u, λ) in (4.2) and (4.3)we find

∂−jΘ(u, λ) = (M0E
(−1)
jj M−1

0 )Θ(u, λ),

∂j (M
−1
0 M(u, λ)) = (M−1

0 E
(1)
jj M0)(M

−1
0 M(u, λ)), (4.9)

and

∂jΘ(u, λ) = −(ΘE(1)jj Θ
−1)−Θ(u, λ),

∂−j (M−1
0 M(u, λ)) = −(M−1

0 ME(−1)
jj (M−1

0 M)−1)>0(M
−1
0 M(u, λ)). (4.10)

Eqs. (4.9) and (4.10)exhibit invariance under simultaneous interchanges:∂j ↔ ∂−j ,
Θ(u, λ) ↔ M−1

0 M(u, λ), M0 ↔ M−1
0 and of the positive and negative grades. This

type of symmetry will be responsible for appearance of the complex like structure among
the Cecotti–Vafa equations we will derive later in this section.

Applying now∂i onEq. (4.6)and using relations(4.7) and (4.8)we obtain

∂i(M
−1
0 ∂−jM0) = [Ejj ,−M−1

0 [θ(−1), Eii ]M1 +M−1
0 (EiiM0 + [θ(−1), Eii ]M1)],

(4.11)

which after the cancellation of two identical terms with opposite signs results in

∂i(M
−1
0 ∂−jM0) = [Ejj ,M

−1
0 EiiM0], i, j = 1, . . . , m+ 1. (4.12)

By multiplying both sides of(4.12)byM0 from the left andM−1
0 from the right we obtain

an equivalent expression

∂−j (∂iM0M
−1
0 ) = [M0EjjM

−1
0 , Eii ], i, j = 1, . . . , m+ 1, (4.13)

which can be rewritten as a Toda zero-curvature equation:

[∂−j −M0E
(−1)
jj M−1

0 , ∂i − E
(1)
ii − (∂iM0)M

−1
0 ] = 0. (4.14)

Consider next

∂−i (M0Ejj M
−1
0 ) = (−M1Eii +M0EiiM

−1
0 M1)EjjM

−1
0

+M0Ejj (M
−1
0 M1EiiM

−1
0 − EiiM

−1
0 M1M

−1
0 ). (4.15)

For i �= j it holds thatEiiEjj = 0. Using thei ↔ j symmetry exhibited by two remaining
terms on the right-hand side of(4.15)we obtain

∂−i (M0EjjM
−1
0 ) = ∂−j (M0EiiM

−1
0 ). (4.16)

In the same way we also obtain

∂i(M
−1
0 EjjM0) = ∂j (M

−1
0 EiiM0). (4.17)

On basis of relations(4.12), (4.16) and (4.17)we recognize thatM0 satisfies the multi-
dimensional Toda model[27,28].
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4.2. Orthogonal reduction of thêgl(m+ 1,C)-hierarchy

ConsiderĜ = ŝl(m+1)with Cartan subalgebra generatorsH(n)
a and step operatorsE(n)ij

with n ∈ Z andi �= j . Next, define the extended automorphismσ , such that

σ(H(n)
a ) = −(−1)nH(n)

a , a = 1, . . . , m, (4.18)

σ(E
(n)
ij ) = −(−1)nE(n)ji , i �= j = 1, . . . , m+ 1. (4.19)

Theσ automorphism agrees, forn = 0, with the well-known automorphism defining the
symmetric space sl(m+ 1)/so(m+ 1) [29]. The combinations

H(2n+1)
a , a = 1, . . . , m, E

(2n)
ij − E

(2n)
ji , E

(2n+1)
ij + E

(2n+1)
ji ,

i �= j = 1, . . . , m+ 1, n ∈ Z, (4.20)

generate the subalgebra ofŝl(m+ 1) invariant under automorphismσ . Let

Eσ = 1
2(E

(1) + σ(E(1))) = µm ·H(1), (4.21)

and consider the kernel of ad(Eσ ) within the subalgebra of̂sl(m + 1) invariant under
automorphismσ . Such kernel is generated by even combinations from(4.20)within ŝl(m)⊗
û(1). The image of ad(Eσ ) is generated by the following combinations:

E
(2n)
m+1i − E

(2n)
im+1, E

(2n+1)
m+1i + E

(2n+1)
im+1 , i = 1, . . . , m, n ∈ Z. (4.22)

The corresponding reduced potential lies in the zero-grade sub-space spanned by(2.2), i.e.

Aσ =
m∑
i=1

Φi(E
(0)
m+1i − E

(0)
i m+1), (4.23)

with the property that

Aσ = −AT
σ . (4.24)

The loop group generalization of the automorphism in(4.18) and (4.19)has the following
form [31]:

σ(X(λ)) = ((X(−λ))T)−1, X ∈ G = ĜL(m+ 1). (4.25)

One notices that the evolutionEqs. (2.5), (2.6), (2.44) and (2.45)are invariant under the
automorphismσ defined in(4.25)for n being an odd integer. As an illustration we consider
Eq. (2.5)and find that the flows for theσ transformedΘ matrix become

∂

∂u
(n)
j

σ (Θ)(u, λ) = (−1)n(σ (Θ)(u, λ)E(n)jj σ(Θ
−1)(u, λ))−σ(Θ)(u, λ). (4.26)

Eq. (4.26)agrees with(2.5) for (−1)n = −1 which shows the desired result.
Accordingly, we define the integrable sub-hierarchy by constraining the dressing matrices

Θ(u, λ) andM(u, λ) to be the fixed points of the loop group automorphismσ (4.25):

Θ−1(u, λ) = ΘT(u,−λ), (4.27)
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M−1(u, λ) = MT(u,−λ), (4.28)

with Θ(u, λ) andM(u, λ) depending only on odd coordinatesu: (u(n)j = u
(2k+1)
j ). From

our discussion above it is clear that the odd flows of the reduced sub-hierarchy will preserve
the conditions(4.27) and (4.28).

The fixed points of the automorphismσ form a subgroup ofG = ĜL(m + 1), called
a twisted loop group of GL(m + 1). In [30,31], the twisted loop group of GL(n), in the
context ofn-component KP hierarchy, was used to find solutions of the Darboux–Egoroff
system of PDEs.

Note, that from(4.28)we derive the additional orthogonality constraint onM0:

MT
0 = M−1

0 , (4.29)

For the first termθ(−1) of expansion ofΘ = 1 + θ(−1) + O(λ−2) the constraint(4.27)
implies thatθ(−1) = θ(−1)T. Hence the reduction based on(4.27)imposesAT = −A as in
(4.24).

Let us now return to the extended Riemann–Hilbert problem(2.43)and restrict it to the
reduced model with only odd-flows and with constraints(4.27) and (4.28). By writing the
extended Riemann–Hilbert problems(2.43) for bothΘ−1(u, λ) andΘT(u,−λ) with the
constraint(4.27)imposed we obtain

MT(u,−λ)M(u, λ) = exp

m+1∑
j=1

∞∑
k=0

E
(−2k−1)
jj u

(−2k−1)
j

 gT(−λ)g(λ)

× exp

−
m+1∑
j=1

∞∑
k=0

E
(−2k−1)
jj u

(−2k−1)
j

 . (4.30)

Due to(4.28)we see that the necessary condition for theg group element is

gT(−λ)g(λ) = I, (4.31)

i.e. g(λ) is a fixed point of the automorphismσ . Alternatively, we can derive the reduced
sub-hierarchy from the Riemann–Hilbert problem with odd flows defined on the twisted
loop group of GL(m+ 1).

The tau function for this sub-hierarchy becomes

τ(u) =
〈
0

∣∣∣∣∣∣exp

m+1∑
j=1

∞∑
k=0

E
(2k+1)
jj u

(2k+1)
j

 g(λ)
× exp

−
m+1∑
j=1

∞∑
k=0

E
(−2k−1)
jj u

(−2k−1)
j

∣∣∣∣∣∣0
〉
, (4.32)

and can be obtained from the originalτ -function in (2.59) by puttingu(±2k)
j = 0 and

enforcing ong(λ) the condition(4.31). The model is therefore embedded in the CKP
hierarchy[3,16].
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4.3. Cecotti–Vafa equations

Next, observe that from(4.5) it follows:

m+1∑
j=1

∂−jM0 = 0. (4.33)

Using(4.4) and (4.5)we find

∂−j (M−1
0 M1) = [M−1

0 M1, Ejj ]M
−1
0 M1 + [ Ejj ,M

−1
0 M2], (4.34)

which leads to
m+1∑
j=1

∂−j (M−1
0 M1) = 0. (4.35)

Moreover, from(4.5) and (4.34)we get for the matrix components(M0)ik and(M−1
0 M1)ik:

∂−j (M0)ik = (M0)ij (M
−1
0 M1)jk, j �= k, (4.36)

∂−j (M−1
0 M1)ik = (M−1

0 M1)ij (M
−1
0 M1)jk, i, j, k distinct. (4.37)

From

∂j (M
−1
0 M1) = M−1

0 EjjM0, (4.38)

we get

∂j (M
−1
0 M1)ik = (M−1

0 )ij (M0)jk. (4.39)

Similarly, from(4.7)we find

∂j (M0)ik = (θ(−1))ij (M0)jk, i �= j. (4.40)

For θ(−1) we find from(4.2),

∂j θ
(−1) = [Ejj , θ

(−2)] + [θ(−1), Ejj ]θ
(−1), (4.41)

from which it follows that

∂j (θ
(−1))ik = (θ(−1))ij (θ

(−1))jk, i, j, k distinct. (4.42)

Also

∂−j θ(−1) = M0EjjM
−1
0 , (4.43)

gives

∂−j (θ(−1))ik = (M0)ij (M
−1
0 )jk. (4.44)

Consider now the reduced case with the orthogonal matrix:M0 = (mij )1≤i,j≤m+1. For
simplicity we introduce a notationM−1

0 M1 = B̄ = (β̄ij )1≤i,j≤m+1. Then from(4.6) it
follows that

MT
0 ∂−jM0 = [Ejj , B̄] (4.45)
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for all j such that 1≤ j ≤ m+ 1. Transposing both sides of the matrix relation(4.45)we

find that the matrixM−1
0 M1 = B̄ is symmetric (̄B

T = B̄) for the matrixM0 satisfying the
orthogonality condition(4.29).

We can summarize our results(4.12), (4.16) and (4.17)in the reduced case as

∂i(M
T
0 ∂−jM0) = [Ejj ,M

T
0EiiM0], (4.46)

∂−i (M0EjjM
T
0 ) = ∂−j (M0EiiM

T
0 ), (4.47)

∂i(M
T
0EjjM0) = ∂j (M

T
0EiiM0). (4.48)

These equations have been derived by Cecotti and Vafa[14,33]. Imposing the Hermiticity

conditionMT
0 = M∗

0 or M0 = M
†
0 , we find thatEqs. (4.46)–(4.48)are invariant under

complex conjugation∗ which takes∂j to ∂−j and vice versa.
TheB̄-matrix elements satisfy

∂−j β̄ik = β̄ij β̄jk, i, j, k distinct, (4.49)

m+1∑
j=1

∂−j β̄ik = 0, (4.50)

∂j β̄ik = mjimjk, (4.51)

as follows from relations(4.35), (4.37) and (4.39). The first twoEqs. (4.49) and (4.50)for
the symmetric̄Bmatrix are characteristic for the Egoroff metric.

For the derivatives of matrix elementsmij we find from(4.5), (4.33) and (4.36):

∂−jmik = mij β̄jk, j �= k, (4.52)

m+1∑
j=1

∂−jmik = 0,
m+1∑
j=1

∂jmik = 0. (4.53)

These relations couple to additional relations(4.40), (4.43) and (4.44)involving the sym-
metric matrixθ(−1) = (βij )1≤i,j≤m+1:

∂jmik = βijmjk, i �= j, (4.54)

∂jβik = βijβjk, i, j, k distinct, (4.55)

∂−jβik = mij mkj (4.56)

with βij satisfying

m+1∑
j=1

∂jβik = 0. (4.57)

We notice a presence in our formalism of two Egoroff systems involving two symmetric
matricesB̄ andθ(−1). The first one in(4.49) and (4.50)is realized in terms of the negative
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flowsu(−1)
j , while the second Egoroff system in(4.55) and (4.57)is based on the positive

flowsu(1)j . Both systems are coupled to each other through the matrixM0.
The combined system ofEqs. (4.49)–(4.57)exhibits invariance under the simultaneous

interchange:

∂−j ↔ ∂j , β̄ik ↔ βik, mij ↔ mji , (4.58)

which maps one Egoroff system into the other.Eqs. (4.49)–(4.57)provide a coordinate form
of the Cecotti–Vafa system[14] which appeared in[15,27]. The symmetry(4.58)introduces
a complex like structure analogous to complex conjugation on the complex manifold on
which the Cecotti–Vafa system was realized in[15].

For completeness we also list the identities

m+1∑
j=1

∂j (M
−1
0 M1) =

m+1∑
j=1

∂j B̄ = I,

m+1∑
j=1

∂−j θ(−1) = I, (4.59)

which follow from(4.38) and (4.43).

4.4. Example: reduction in case of̂gl(2,C)-hierarchy

Theĝl(2,C)-hierarchy contains the homogeneousA1-hierarchy (also known in the lit-
erature as the AKNS hierarchy) together with a trivial decoupled scalar field. Accordingly,
we only consider the underlyingA1-hierarchy. In[7] the AKNS hierarchy was extended by
the “negative” symmetry flows forming the Borel loop algebra. It was shown there how the
complex sine-Gordon equation arises as a symmetry flow of the homogeneousA1-hierarchy.
The complex sine-Gordon and the Nonlinear Schrödinger equations appear as lowest neg-
ative and second positive flows within the extended hierarchy. LetĜ = ŝl(2) be a loop
algebra on which we are given a graded structureĜ = ⊕n∈Z Ĝn with respect to an integral
homogeneous gradation defined by the operatord = λd/dλ. The algebraG = sl(2,C) has
a standard basisEα = σ+,E−α = σ− andH = σ3. We work within an algebraic approach
to the integrable models based on the linear spectral problemL(M) = 0 with a matrix Lax
operator containing the matrixA = qEα + rE−α [8]. The second flow of the hierarchy:

∂2r = rxx − 2q2r, ∂2q = −qxx + 2q2r (4.60)

gives the familiar non-linear Schrödinger equation.
The flow generated byE(−1) is of special interest and we now provide its zero-curvature

formulation. We choose the Gauss decomposition given by the following exponential of
terms belonging to zero grade subalgebraĜ0 = sl(2) in order to parameterizeM0 satisfying
(4.7)

M0 = eχE−α eRH eψEα , (4.61)

and define gauge potentials

A− = M0E
(−1)M−1

0 , A+ = −∂xM0M
−1
0 + E(1). (4.62)
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In order to match the number of independent modes in the matrixA we impose two
“diagonal” constraints Tr(∂xM0M

−1
0 H) = Tr(M−1

0 ∂−1M0H) = 0 which effectively elim-
inateR in terms ofψ andχ . In fact, those constraints reduce the zero grade subspace
Ĝ0 = sl(2) into the coset sl(2)/U(1). In terms of variables defined in(4.61), these con-
straints determine the non-local fieldR as

∂xR = v∂xu

∆
, ∂−1R = u∂−1v

∆
, (4.63)

where

u = ψ eR, v = χ eR, ∆ = 1 + uv. (4.64)

Since,M0 has been chosen so that after imposition of the constraints(4.63)∂xM0M
−1
0 =

−(qEα + rE−α) we obtain the following representation forq andr:

q = −∂xu
∆

eR, r = −(∂xv)e−R, (4.65)

and the zero-curvature condition(4.14):

[∂−1 +A−∂x +A+] = ∂−1A+ − ∂xA− + [A−A+] = 0 (4.66)

leads to the equations of motion:

∂−1q = −∂−1

(
∂xu

∆
eR
)

= ueR, (4.67)

∂−1r = −∂−1(∂xv e−R) = v∆e−R. (4.68)

Let us now discuss the orthogonal reduction−q = r = Φ in expression(4.23). This
corresponds to settingv = −u and e2R = ∆ as follows fromEqs. (4.63)–(4.65). Eqs. (4.67)
or (4.68)become in this limit:

∂−1∂xu+ u∂xu∂−1u

∆
= −u∆. (4.69)

Using the 2× 2 representation of the sl(2) algebra together with the constraintu = −v it
follows from(4.61)that under the orthogonal reduction the matrixM0 takes the following
form:

M0 =
(

eR u

−u eR

)
, M−1

0 =
(

eR −u
u eR

)
, (4.70)

which reproduces formulas derived from the pseudo-differential approach inEqs. (3.39),
(3.42) and (3.43).

The constraintM†
0 = M0 amounts to choosingu as a purely imaginary function:

u = i sinhβ. (4.71)

In this parameterization eR = coshβ. Plugging this intoEq. (4.68)we obtain the sinh-Gordon
equation:

∂−1∂xβ = −1
2 sinh(2β) (4.72)
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for the reduced hierarchy. One can verify thatM−1
0 M1 becomes now a symmetric matrix

in agreement withEq. (4.38).
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